

The Undiagnosed Diseases Network: A resource for challenging cases

Jill Rosenfeld Mokry, MS CGC Baylor College of Medicine February 4, 2017

Disclosures

• Jill Rosenfeld Mokry receives salary support from Baylor Genetics Laboratories, a clinical genetic testing laboratory.

Overview

- What is the UDN?
- Lessons from the NIH
- Case example

Why study the undiagnosed?

- Diagnostic odysseys have high costs: emotional and financial
- Lack of a diagnosis
 - Creates concern or suspicion
 - Challenges the patient-physician relationship
- Personalized, precision medicine
- Advancement of scientific knowledge

Goals of the UDN

- Provide patients who have been extensively evaluated with an accurate diagnosis
- Use new genomic technologies to aid in diagnosis
- Assess phenotyping approaches
- Identify novel diseases
- Uncover new information about the causes of disease
- Identify potential therapeutic targets

Who is in the Network?

7 Clinical sites:

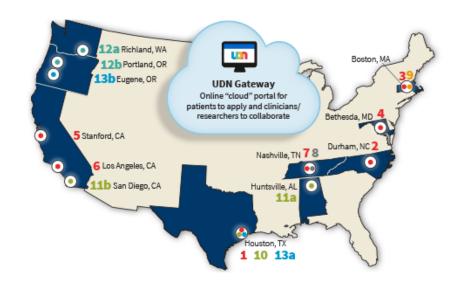
- Baylor College of Medicine
- Duke Medical Center
- Harvard-affiliated hospitals
- NIH Undiagnosed Diseases Program
- Stanford Medical Center
- UCLA Medical Center
- Vanderbilt University Medical Center

2 Sequencing cores:

- Baylor College of Medicine
- HudsonAlpha/Illumina

1 Coordinating center:

Harvard Medical Center


Additional resources

Model organisms screening center:

- Baylor College of Medicine
- University of Oregon

Metabolomics core:

- Battelle Pacific
 Northwest National
 Laboratories
- Oregon Health & Science University

Central biorepository:

Vanderbilt University
 Medical Center

History: The Undiagnosed Diseases Program (UDP)

- Started in 2008 at the NIH
- 2008-2014:
 - Received over 10,000 inquiries
 - Reviewed records of over 3300 applicants
 - 800 patients evaluated
 - 40% pediatric
 - 30% adults with disease onset in childhood
- ~10% receive diagnosis of rare or novel disease

Types of diagnoses

- Extremely rare diseases
 - Ehlers-Danlos syndrome, musculocontractural type I [CHST14]
 - Early-onset myopathy, areflexia, respiratory distress, and dysphagia [MEGF10]
 - Rare presentations of known diseases
 - Blended phenotypes of multiple diseases
 - Novel diseases
 - Calcification of joints and arteries [NT5E]
 - Familial distal myopathy [HINT3]

Lessons learned at the UDP

- Whole-exome sequencing can be most economical when multiple gene candidates are being considered.
- Sequencing of family members can be a powerful tool to help filter and interpret variants found on whole-exome sequencing.
- Accurate and meticulous phenotyping is essential.
- Multidisciplinary collaborations are critical to making diagnoses.

The UDN process

Patient applies online, supplying a physician's referral letter

Patient is assigned to a clinical site, where application is reviewed and medical records are gathered

Patient is informed of decision of acceptance into study

Patient travels to clinical site for study visit: up to 5 days of consultations and clinically indicated tests

Diagnosis, therapy, and/or further basic research

Working with the UDN

- Referring providers may participate in discussions about their patients.
- Summary of UDN workup is provided back to family and referring provider.
- Publications
 - Referring physicians invited to be coauthors
 - The network is also listed as a co-author

Patient volume

- Phase I (through April 2018)
 - 135 patients per clinical site
 - Current rate of 50 patients per year
 - At BCM: 75 patients accepted, 39 evaluated

- Phase II to run into 2023
 - Patient volume not yet specified

Case example

- 8- and 3-year-old brothers with a working diagnosis of mitochondrial encephalomyopathy plus
- Prenatal onset of disorder
- Developmental, neurologic, and metabolic features

	TH (8yo)	ZH (3yo)	
Prenatal	Severe polyhydramnios, LGA		
At birth	Arthrogryposis	No arthrogryposis	
Cardiac	ASD, dysplastic pulmonary valve with pulmonic stenosis, biventricular hypertrophy		
	Prolonged QTc	_	
Feeding	Failure to thrive necessitating gastrostomy		
Metabolic	Intermittent hypoglycemic episodes with metabolic acidosis and ketosis		
	Cyclic vomiting requiring hospitalization		
Neurologic	Hypotonia, mild developmental delays		
	latrogenic stroke, seizures, hemiparesis, cerebral volume loss		

The diagnostic odyssey

- Metabolic testing, including metabolomics and CDG studies
- Muscle biopsies
- Endocrine evaluations
- Renal evaluations
- MRIs, EEGs
- Genetic testing
 - Karyotype, microarray
 - RASopathy panel
 - Mitochondrial sequencing
 - Whole exome sequencing (proband only)

UDN evaluation

- Evaluations for siblings:
 - Genetics
 - Neurology
 - Cardiology
 - Ophthalmology
 - General pediatrics
 - Skeletal surveys
 - EEGs

- Lab studies:
 - Lactate & metabolomics repeat both siblings
 - Urine organic acids (TH)
 - Complete family WES studies – reanalysis
 - RNAseq both siblings' fibroblasts and blood

UDN findings

TH

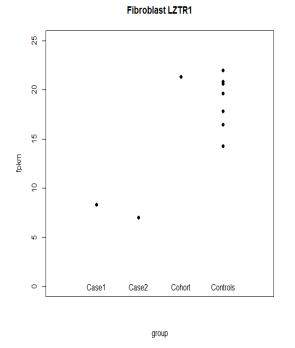

- EEG spike and polyspike and slow wave activity
- Skeletal survey Thoracolumbar kyphosis
- Cardiology pulmonary valve thickening, mild ventricular septal hypertrophy, slightly prolonged QT interval
- Labs Global MAPS mild elevations of several long fatty acids, lactate nl

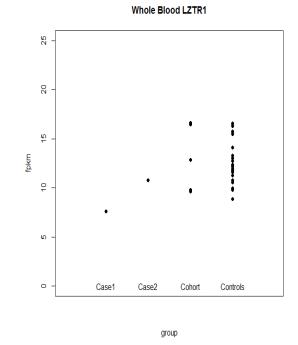
ZH

- EEG spike and polyspike and slow wave activity
- Brain MRI Chiari I, otherwise normal
- Cardiology mild dilation of the main pulmonary artery and branch pulmonary arteries, mild concentric left ventricular hypertrophy
- Labs Global MAPS no perturbations in tested pathways, lactate nl

Exome analysis of quad

- Compound heterozygous, LZTR1
 - Dominant missense variants cause Noonan
 - Dominant missense or nonsense variants cause Schwannomatosis


RNAseq, LZTR1


	Tissue	Variant Reads	Total Reads
ZH	Whole Blood	17	38
ZH	Fibroblast	12	30
TH	Whole Blood	11	30
TH	Fibroblast	18	38

- Variant (paternal nonsense allele) observed in ~50% of reads, thus escape of nonsense-mediated decay.
- Alternative splicing not seen.

RNAseq

- Overall reduced expression, and given escape of NMD, this suggests diminished expression on both alleles (maternal and paternal allele)
- Sequencing of ZH's genome has not identified any additional LZTR1 variants.

Additional research

- Studies on patients' cells
 - SeaHorse assay mild alterations
 - ERK is downregulated
 - CRISPR in progress to study effect of intronic variant
- Drosophila studies in model organisms core
 - Knockout does not have a phenotype
 - Crossing knockout with RAS gain-of-function line
- Identified 2 collaborators with 4 additional families with recessive Noonan-like syndrome & LZTR1 variants

Conclusion

- In efforts to find a diagnosis, UDN leverages technologies and resources that may otherwise be unavailable.
- Through collaborative phenotyping and in-depth genotyping, UDN is providing diagnoses, discovering new disease genes, and providing phenotypic expansion.
- UDN seeks to provide value to participating patients and referring physicians.

Seeking partners to make referrals

- Patients initiate application process online or via phone
 - http://undiagnosed.hms.harvard.edu
 - 1-844-RINGUDN
 - Please supply your patient with a referral letter.
- Contact UDN team at BCM for more information
 - PI: Dr. Brendan Lee
 - Coordinator: Jill Mokry, MS
 - <u>Undiagnosed.diseases@bcm.edu</u>
 - 713-798-5440

